Abstract

We describe methods for the isolation, purification, and characterization of full-length high-mobility group box 1 (HMGB1) and truncated mutants expressed in bacteria and in mammalian Chinese Hamster Ovary (CHO) cells. HMGB1 is an abundant nuclear and cytoplasmic protein, highly conserved across species and widely distributed in eukaryotic cells from yeast to man. As a ubiquitous nuclear DNA binding protein, HMGB1 binds DNA, facilitates gene transcription, and stabilizes nucleosome structure. In addition to these intracellular roles, HMGB1 can be released into the extracellular milieu by activated innate immune cells (i.e., macrophages, monocytes) and functions as a mediator of lethal endotoxemia and sepsis. The proinflammatory cytokine activity of HMGB1 has become an intense area of research and recombinant protein can be a useful tool to probe HMGB1 functions. Due to its dipolar charged properties, HMGB1 isolated by some methods can be contaminated with bacterial products (such as CpG DNA or lipopolysaccharide [LPS]) that may interfere with immunological analyses. Here we report our newly developed methods for the isolation and purification of biologically active HMGB1 from bacteria or mammalian CHO cells that is essentially free of contaminants. This strategy provides an important advance in methodology to facilitate future HMGB1 studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.