Abstract

Recombinant HIV-1 reverse transcriptase (RT) was stably overproduced as a soluble protein in Escherichia coli using a double-plasmid expression system in which an RT precursor protein was expressed and processed in vivo by HIV-1 protease produced in trans. The RT thus produced consisted of an equimolar mixture of two polypeptides, p66 and p51, which were copurified to >90% homogeneity and were found to share a common NH 2 terminus as judged by sequence analysis of the polypeptide mixture. The observed sequence confirmed correct in vivo cleavage by protease at the protease-RT polyprotein junction to yield an NH 2 terminus identical to that of genuine viral RT (M.M. Lightfoote et al. (1986) J. Virol. 60, 771–775; F. diMarzo Veronese et al. (1986) Science 231, 1289–1291). The bacterially expressed RT had a specific activity similar to that of viral RT and inhibition studies with phosphonoformate confirmed that it was indistinguishable from the viral enzyme with respect to sensitivity to this inhibitor. Polymerase activated gel analysis of the mixture indicated that p66 was associated with a higher level of RT activity than p51. RNase H activated gel analysis suggested that the purified preparation of recombinant RT was free of endogenous E. coli RNase H, and that the RNase H activity of RT was exclusively associated with the p66 polypeptide, supporting the hypothesis that the RNase H domain is located in the COOH-terminal region of the molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.