Abstract

The human T-cell leukemia virus type 1 (HTLV-1) is a positive single-stranded RNA virus that belongs to the delta retrovirus family. As a result, a vaccine candidate that can be recognized by B cells and T cells is a good candidate for generating a durable immune response. Further, the GPEHT protein is a multi-epitope protein designed based on the Gag, Pol, Env, Hbz, and Tax proteins of HTLV-1. In developing a suitable and effective vaccine against HTLV-1, the selection of a designed protein (GPEHT) with the formulation of an alum adjuvant was conducted. In this study, we assessed the potential of a multi-epitope vaccine candidate for stimulating the immune response against HTLV-1. In assessing the type of stimulated immune reaction, total IgG, IgG1, and IgG2a isotypes, as well as the cytokines associated with Th1 (IFN-γ), Th2 (IL-4), and Th17 (IL-17), were analyzed. The outcomes showed that the particular antisera (total IgG) were more elevated in mice that received the GPEHT protein with the alum adjuvant than those in the PBS+Alum control. A subcutaneous vaccination with our chimera protein promoted high levels of IgG1 and IgG2a isotypes. Additionally, IFN-γ, IL-4, and IL-17 levels were significantly increased after spleen cell stimulation in mice that received the GPEHT protein. The immunogenic analyses revealed that the GPEHT vaccine candidate could generate humoral and cell-mediated immune reactions. Ultimately, this study suggests that GPEHT proteins developed with an alum adjuvant can soon be considered as a prospective vaccine to more accurately evaluate their protective efficacy against HTLV-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call