Abstract
An ideal approach to treat cancers with dysfunctional p53 tumor suppressor gene is to reinstate p53 functionality by directly using p53 protein as a therapeutic agent. However, this has not been possible because the cells cannot readily internalize the protein. We constructed a fusion protein consisting of gonadotropin-releasing hormone (GnRH-p53) and p53 moieties. The recombinant protein was directly used to treat human breast cancer cells and athymic nude mice bearing breast cancer xenografts, with or without DNA synthesis-arresting agent 5-fluorouracil (5-FU). Treatments of cells from breast cancer cell-lines MDA-MB-231, T47D, or SKBR-3 with GnRH-p53 in combination with 5-FU significantly enhanced p53-activated apoptosis signals, including PUMA expression, BAX translocation to mitochondria, and activated caspase-3. Intratumoral injection of the GnRH-p53 protein inhibited MDA-MB-231 xenograft growth and induced p53-mediated apoptosis in the tumors. Systemic treatment of the tumor-bearing mice via tail vein injection of GnRH-p53 markedly augmented the anticancer efficacy of 5-FU. Substitution of GnRH-p53 with wild type p53 protein had no effect. Recombinant GnRH-p53 is able to function as a surrogate of p53 with regard to its apoptosis-inducing activity. Combination of GnRH-p53 with DNA-damaging drugs may be of important therapeutic value for cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.