Abstract

TAR DNA-binding protein with 43 kD (TDP-43) is a partially disordered protein that misfolds and accumulates in the brains of patients affected by several neurodegenerative diseases. TDP-43 oligomers have been reported to form due to aberrant misfolding or self-assembly of TDP-43 monomers. However, very little is known about the molecular and structural basis of TDP-43 oligomerization and the toxic properties of TDP-43 oligomers due to several reasons, including the lack of conditions available for isolating native TDP-43 oligomers or producing pure TDP-43 oligomers in sufficient quantities for biophysical, cellular, and in vivo studies. To address these challenges, we developed new protocols to generate different stable forms of unmodified and small-molecule-induced TDP-43 oligomers. Our results showed that co-incubation of TDP-43 with small molecules, such as epigallocatechin gallate (EGCG), dopamine, and 4-hydroxynonenal (4-HNE), increased the production yield of TDP-43 stable oligomers, which could be purified by size-exclusion chromatography. Interestingly, despite significant differences in the morphology and size distribution of the TDP-43 oligomer preparations revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS), they all retained the ability to bind to nucleotide DNA. Besides, circular dichroism (CD) analysis of these oligomers did not show much difference in the secondary structure composition. Surprisingly, none of these oligomer preparations could seed the aggregation of TDP-43 core peptide 279-360. Finally, we showed that all four types of TDP-43 oligomers exert very mild cytotoxicity to primary neurons. Collectively, our results suggest that functional TDP-43 oligomers can be selectively stabilized by small-molecule compounds. This strategy may offer a new approach to halt TDP-43 aggregation in various proteinopathies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.