Abstract

Mycobacterium tuberculosis (Mtb) is a crucial and highly destructive intracellular pathogen responsible for causing tuberculosis (TB). The emergence and dissemination of multi-drug resistant Mtb has further aggravated the TB crisis, leading to high mortality. Mtb FadD2 is a fatty acyl-coenzyme A (CoA) synthetase that modifies the cell envelope and plays an important role in reducing Mtb susceptibility to pyrazinoic acid (POA). However, the functional mechanism of Mtb FadD2 remains poorly understood. Here, we successfully expressed, purified and obtained monomeric FadD2 by using buffer (500 mM NaCl, 20 mM Tris-HCl, pH7.4 and 5 % glycerol). Palmitate was found to be the optimal substrate for FadD2. Fatty acyl-CoA synthetase activity reached maximum at 450 μM palmitate, and the Km value was 318.2 μM for palmitate. The results of mutation experiments indicated the critical role of T370 and K551 in the enzymatic activity of FadD2. Our work provides a guideline and concept for the development of novel drugs against Mtb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.