Abstract

ABSTRACT Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) persistently kills nearly 1.5 million lives per year in the world, whereas the only licensed TB vaccine BCG exhibits unsatisfactory efficacy in adults. Taking BCG as a vehicle to express Mtb antigens is a promising way to enhance its efficacy against Mtb infection. In this study, the immune efficacy of recombination BCG (rBCG-ECD003) expressing specific antigens ESAT-6, CFP-10, and nDnaK was evaluated at different time points after immunizing BALB/c mice. The results revealed that rBCG-ECD003 induced multiple Th1 cytokine secretion including IFN-γ, TNF-α, IL-2, and IL-12 when compared to the parental BCG. Under the action of PPD or ECD003, rBCG-ECD003 immunization resulted in a significant increase in the proportion of IL-2+ and IFN-γ+IL-2+ CD4+T cells. Importantly, rBCG-ECD003 induced a stronger long-term humoral immune response without compromising the safety of the parental BCG vaccine. By means of the protective efficacy assay in vitro, rBCG-ECD003 showed a greater capacity to inhibit Mtb growth in the long term. Collectively, these features of rBCG-ECD003 indicate long-term protection and the promising effect of controlling Mtb infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call