Abstract

A platform for selective and controllable expression of multiple foreign protein types was developed in insect cell culture. Based on the fact that baculovirus cannot replicate in nonpermissive Drosophila melanogaster Schneider line 2 (S2) cells, S2 cells that stably express human erythropoietin (hEPO) under the control of the S2-derived inducible metallothionein (MT) promoter were infected with three types of recombinant baculoviruses, each of which expressed a different fluorescent protein gene under the control of MT promoter. Addition of copper sulfate as an inducer to infected, stably transfected S2 cells resulted in simultaneous expression of hEPO and three fluorescent proteins. Expression profiles and levels of the three induced fluorescent proteins were similar in all single infected cells. Importantly, expression profiles and levels of hEPO were similar in both non-infected and infected cells, indicating that baculovirus expressed recombinant proteins do not adversely affect expression of host cell recombinant proteins. Expressions of the three fluorescent proteins were able to be selectively regulated by altering combination ratios of the three types of recombinant baculoviruses. Collectively, these data indicate that the baculovirus/stably transfected S2 cell system can be successfully used to express multiple foreign proteins in a controlled and selective manner without the burden of additional selection markers. Such a system would be expected to be attractive as a multiple protein expression platform for engineering metabolic or glycosylation pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call