Abstract

Bactericidal/permeability-increasing (BPI) protein has been shown to play an important role in innate immunity to gram-negative bacteria, by direct microbicidal as well as endotoxin-neutralizing action. Here we examined potential interactions between a recombinant 21-kDa bioactive fragment of BPI, rBPI21, and the gram-positive pathogen Streptococcus pneumoniae. rBPI21 bound to pneumococci and pneumolysin (Ply) in a direct and specific fashion. We observed an enhanced inflammatory response in mouse macrophages when rBPI21 was combined with killed pneumococci or supernatant from overnight growth of pneumococci. In addition, rBPI21 augmented the proapoptotic activity of Ply+ (but not Ply-) pneumococci in TLR4-defective murine macrophages (known to be defective also in their apoptotic response to pneumolysin) in a tumor necrosis factor alpha-dependent manner. rBPI21 also enhanced the association of pneumococci with murine macrophages. In a model of invasive pneumococcal disease in TLR4-defective mice, the intranasal administration of rBPI21 following intranasal inoculation of Ply+ pneumococci both enhanced upper respiratory tract cell apoptosis and prolonged survival. We have thus discovered a novel interaction between pneumococcus and rBPI21, a potent antimicrobial peptide previously considered to target only gram-negative bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.