Abstract

Several gangliosides such as GM2, GD2, and GD3 have been thought of as target molecules for active or passive immunotherapy of human cancers because of their dominant expression on the tumor cell surface, especially in tumors of neuroectodermal origin. We established a number of mouse or rat monoclonal antibodies (mAbs) to a series of gangliosides to investigate the nature of the molecules on the cell surface. Some of those mAbs were converted to chimeric or humanized mAbs with the aim of developing immunotherapy for human cancer. It is desirable for mAbs to remain on the cell surface for a long time so that they can exert effector functions such as complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). We found that mAbs to GM2, GD2, and GD3 remain on the cell surface for > or =60 min after binding, while mAbs to other types of carbohydrate such as sialy Le(a) are quickly internalized. A chimeric mAb to GD3, KM871, was generated by linking cDNA sequences encoding light- and heavy-chain variable regions of mouse mAb KM641 with cDNAs encoding the constant region of human immunoglobulin gamma1 (IgG-1). KM871 bound to a variety of tumor cell lines, especially melanoma cells, including some cell lines to which R24 failed to bind. In a preclinical study, intravenous injection of KM871 markedly suppressed tumor growth and radiolabeled KM871 efficiently targeted the tumor site in a nude mouse model. This chimeric mAb is being evaluated in a phase I clinical trial in melanoma patients. The chimeric mAb KM966 and humanized mAb KM8969 to GM2 originated from a mouse IgM mAb. When human serum and human peripheral blood mononuclear cells were used as effectors in CDC and ADCC, respectively, KM966 and KM8969 killed GM2-expressing tumor cells effectively. In addition, these mAbs may induce apoptosis of a small cell lung cancer cell line cultured under conditions mimicking physiological tumor conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.