Abstract

BackgroundOligomeric and fibrillar aggregates of the amyloid β-peptide (Aβ) have been implicated in the pathogenesis of Alzheimer's disease (AD). The characterization of Aβ assemblies is essential for the elucidation of the mechanisms of Aβ neurotoxicity, but requires large quantities of pure peptide. Here we describe a novel approach to the recombinant production of Aβ. The method is based on the coexpression of the affibody protein ZAβ3, a selected affinity ligand derived from the Z domain three-helix bundle scaffold. ZAβ3 binds to the amyloidogenic central and C-terminal part of Aβ with nanomolar affinity and consequently inhibits aggregation.ResultsCoexpression of ZAβ3 affords the overexpression of both major Aβ isoforms, Aβ(1–40) and Aβ(1–42), yielding 4 or 3 mg, respectively, of pure 15N-labeled peptide per liter of culture. The method does not rely on a protein-fusion or -tag and thus does not require a cleavage reaction. The purified peptides were characterized by NMR, circular dichroism, SDS-PAGE and size exclusion chromatography, and their aggregation propensities were assessed by thioflavin T fluorescence and electron microscopy. The data coincide with those reported previously for monomeric, largely unstructured Aβ. ZAβ3 coexpression moreover permits the recombinant production of Aβ(1–42) carrying the Arctic (E22G) mutation, which causes early onset familial AD. Aβ(1–42)E22G is obtained in predominantly monomeric form and suitable, e.g., for NMR studies.ConclusionThe coexpression of an engineered aggregation-inhibiting binding protein offers a novel route to the recombinant production of amyloidogenic Aβ peptides that can be advantageously employed to study the molecular basis of AD. The presented expression system is the first for which expression and purification of the aggregation-prone Arctic variant (E22G) of Aβ(1–42) is reported.

Highlights

  • Oligomeric and fibrillar aggregates of the amyloid β-peptide (Aβ) have been implicated in the pathogenesis of Alzheimer's disease (AD)

  • Lane 1: Marker. 2: Cell lysate after MAβ(1–40) coexpression. 3: IMAC wash fraction (10 mM imidazole). 4: IMAC eluate after addition of 150 mM imidazole, demonstrating the effective capture of the ZAβ3:MAβ(1– 40) complex. 5: Purified MAβ(1–40). 6: Purified MAβ(1–42)

  • Samples were incubated for 2 min at 95°C prior to loading. (B) Elution profiles of analytical size exclusion chromatography (SEC) of MAβ(1–40), Aβ(1–40), MAβ(1–42), Aβ(1–42). (C) Far-UV circular dichroism (CD) spectra of MAβ(1– 40), Aβ(1–40), MAβ(1–42), Aβ(1–42). (D) Kinetics of amyloid fibril formation of MAβ(1–42) and Aβ(1–42) monitored by thioflavin T fluorescence

Read more

Summary

Introduction

Oligomeric and fibrillar aggregates of the amyloid β-peptide (Aβ) have been implicated in the pathogenesis of Alzheimer's disease (AD). The characterization of Aβ assemblies is essential for the elucidation of the mechanisms of Aβ neurotoxicity, but requires large quantities of pure peptide. ZAβ3 binds to the amyloidogenic central and Cterminal part of Aβ with nanomolar affinity and inhibits aggregation. AD is characterized by large extracellular deposits of senile plaques in the brain, consisting of aggregated, fibrillar amyloid β-peptide (Aβ) [2,3]. Aβ originates from proteolytic processing of the amyloid precursor protein (APP) [7]. APP is cleaved by the membrane associated β- and γ-secretases that generate a number of differently sized peptides, of which Aβ(1–40) and Aβ(1–42) are most abundant. Mutations within Aβ are associated with familial AD and cerebral amyloid angiopathy. One example is the Arctic (E22G) mutation, which entails enhanced Aβ protofibril formation and fibrillation and causes typical AD neuropathology [8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call