Abstract

To explore the potential of recombinant vectors based on recombinant adeno-associated virus (rAAV) for cancer vaccination, we investigated the transduction efficiency of rAAV into cancer cells ex vivo. Infection of human epithelial cancer cell lines with rAAV carrying reporter genes encoding beta-galactosidase (rAAV/LacZ) or luciferase (rAAV/Luc) resulted in high levels of reporter gene expression (>90% positive cells). In marked contrast, rAAV poorly transduced all murine tumor cell lines, as well as human hematopoietic cell lines. Either irradiation or adenovirus infection of tumor cells prior to rAAV infection induced a 10- to 100-fold increase of reporter gene expression. To determine the transduction efficiency of rAAV into primary cancer cells, freshly isolated, irradiated tumor cells from malignant melanoma and ovarian carcinoma patients were infected with rAAV/Luc, resulting in up to 6.9-fold higher levels of gene expression than in a HeLa tumor cell line. Time course experiments with freshly isolated tumor cells infected with rAAV/Luc showed maximal levels of luciferase expression between days 3 and 9 posttransduction. Simultaneous infection of primary tumor cells with up to three rAAV vectors containing genes encoding the immunostimulatory proteins B7-2 (CD86), p35 subunit of IL-12, and p40 subunit of IL-12 resulted in high expression of B7-2 in more than 90% of the tumor cells and in the secretion of high levels of IL-12. Taken together, our results demonstrate that rAAV efficiently transduces freshly isolated human, epithelial tumor cells and might therefore be a potent tool to produce improved, gene-modified cancer vaccines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call