Abstract

Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by dyskinesia, cognitive impairment and emotional disturbances, presenting progressive neurodegeneration in the striatum and intracellular mutant Huntingtin (mHTT) aggregates in various areas of the brain. Recombinant Adeno Associated Viral (rAAV) vectors have been successfully used to transfer foreign genes to the brain of adult animals. In the present study we report a novel in vivo rat HD model obtained by stereotaxic injection of rAAV serotype2/9 containing Exon1-Q138 mHTT (Q138) and Exon1-Q17 wild type HTT (Q17; control), respectively in the right and in the left striatum, and expressed as C-terminal GFP fusions to facilitate detection of infected cells and aggregate production. Immunohistochemical analysis of brain slices from animals sacrificed twenty-one days after viral infection showed that Q138 injection resulted in robust formation of GFP-positive aggregates in the striatum, increased GFAP and microglial activation and neurodegeneration, with little evidence of any of these events in contralateral tissue infected with wild type (Q17) expressing construct. Differences in the relative metabolite concentrations (N-Acetyl Aspartate/Creatine and Myo-Inositol/Creatine) were observed by H1 MR Spectroscopy. By quantitative RT-PCR we also demonstrated that mHTT induced changes in the expression of genes previously shown to be altered in other rodent HD models. Importantly, administration of reference compounds previously shown to ameliorate the aggregation and neurodegeneration phenotypes in preclinical HD models was demonstrated to revert the mutant HTT-dependent effects in our model. In conclusion, the AAV2/9-Q138/Q17 exon 1 HTT stereotaxic injection represents a useful first-line in vivo preclinical model for studying the biology of mutant HTT exon 1 in the striatum and to provide early evidence of efficacy of therapeutic approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.