Abstract

Paracoccidioides fungi are thermodimorphic microorganisms that cause paracoccidioidomycosis (PCM), an autochthonous disease from Latin America, with most cases in Brazil. Humans become infected by inhaling conidia or mycelial fragments that transform into yeast at body temperature. These fungi cause chronic-granulomatous inflammation, which may promote fibrosis and parenchyma destruction in the lungs. In response to stress imposed by the host, fungi Paracoccidioides spp. increase the expression of heat shock proteins (HSP), which protect them by sustaining cellular proteostasis. Our group has studied the role of HSP60 in PCM, and previous data show that the recombinant HSP60 (rHSP60) has a deleterious effect when used in a single dose as therapy for experimental PCM. Here, we investigated the mechanism by which rHSP60 could worsen the disease. We found that rHSP60 caused the viability loss of splenic or lymph node cells from both immunized and non-immunized mice, including in splenic T lymphocytes under polyclonal stimulation with concanavalin A, probably by undergoing apoptosis. Among analyzed splenic cells, lymphocytes were indeed the main cells to die. When we investigated the death mechanisms, remarkably, we found that there was no viability loss in rHSP60-stimulated splenic cells from mice deficient in Toll-like receptor 4, TRIF adapter protein, and TNF receptor 1(TNFR1), as well as rHSP60-stimulated WT cells incubated with anti-TNF antibody. Besides, caspase-8 inhibitor IETD-CHO blocked the rHSP60 effect on splenic cells, suggesting that rHSP60 induces the extrinsic apoptosis pathway dependent on signaling via TLR4/TRIF and TNFR1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call