Abstract

Niche differentiation may betray current, ongoing competition between two sympatric species or reflect evolutionary responses to historic competition that drove species apart. The best opportunity to test whether ongoing competition contributes to niche differentiation is to test for behavioral shifts by the subordinate competitor in controlled experiments in which the abundance of the dominant competitor is manipulated. Because these circumstances are difficult to coordinate in natural settings for wide-ranging species, researchers seize opportunities presented by species reintroductions. We tested for new competition between reintroduced wolves and resident cougars in the Southern Yellowstone Ecosystem to assess whether wolves might be impacting the realized niche of sympatric cougars. Between2002 and 2012, a period during which wolves increased from 15 to as high as 91 in the study area, cougars significantly increased the percentage of deer and decreased the percentage of elk in their diet in summer. Our top models explaining these changes identified elk availability, defined as the number of elk per wolf each year, as the strongest predictor of changing cougar prey selection. Both elk and deer were simultaneously declining in the system, though deer more quickly than elk, and wolf numbers increased exponentially during the same time frame. Therefore,we concluded that prey availability did not explain prey switching and that competition with wolves at least partially explained cougar prey switching from elk to deer. We also recorded 5 marked cougar kittens killed by wolves and 2 more that were killed by an undetermined predator. In addition, between 2005 and 2012, 9 adult cougars and 10 cougar kittens died of starvation, which may also be in part explained by competition with wolves. Direct interspecific predation and shifting cougar prey selection as wolves increased in the system provided evidence for competition between recolonizing wolves and resident cougars. Through competition, recolonizing wolves have impacted the realized niche of resident cougars in the Southern Yellowstone Ecosystem (SYE), and current resident cougars may now exhibit a realized niche more reflective of an era when these species were previously sympatric in the Yellowstone Ecosystem.

Highlights

  • Niche differentiation may betray current, ongoing competition between two sympatric species or reflect evolutionary responses to historic competition that drove species apart

  • In order from greatest frequency to least, 10 cougar kittens died of starvation (38 %), 5 kittens were killed by wolves (19 %), 5 kittens died of unknown causes (19 %), 2 kittens died from an unidentified predator (8 %), 2 kittens were killed by other cougars (8 %), 1 kitten died from disease (4 %), and 1 was killed by wildlife managers (4 %)

  • Our data strongly suggest that competition with increasing wolves in the system was the likely driver of changes in cougar prey selection over the last 12 years

Read more

Summary

Introduction

Niche differentiation may betray current, ongoing competition between two sympatric species or reflect evolutionary responses to historic competition that drove species apart. The best opportunity to test whether ongoing competition contributes to niche differentiation is to test for behavioral shifts by the subordinate competitor in controlled experiments in which the abundance of the dominant competitor is manipulated. Because these circumstances are difficult to coordinate in natural settings for wide-ranging species, researchers seize opportunities presented by species reintroductions. Social predators that select disadvantaged prey in areas of limited structural complexity where they can test their prey’s condition (Husseman et al 2003; Peterson et al 2003). Cougars are solitary stalk-and-pounce predators that select prey

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.