Abstract

Recoil ``kicks'' induced by gravitational radiation are expected in the inspiral and merger of black holes. Recently the numerical relativity community has begun to measure the significant kicks found when both unequal masses and spins are considered. Because understanding the cause and magnitude of each component of this kick may be complicated in inspiral simulations, we consider these effects in the context of a simple test problem. We study recoils from collisions of binaries with initially head-on trajectories, starting with the simplest case of equal masses with no spin and then adding spin and varying the mass ratio, both separately and jointly. We find spin-induced recoils to be significant relative to unequal-mass recoils even in head-on configurations. Additionally, it appears that the scaling of transverse kicks with spins is consistent with post-Newtonian theory, even though the kick is generated in the nonlinear merger interaction, where post-Newtonian theory should not apply. This suggests that a simple heuristic description might be effective in the estimation of spin kicks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.