Abstract
AbstractRecoil velocity is examined as a back reaction to the magnetic dipole and quadrupole radiations from a pulsar/magnetar born with rapid rotation. The model is extended from notable Harrison-Tademaru one by including arbitrary field-strength of the magnetic quadrupole moment. The process is slow one operating on a spindown timescale. Resultant velocity depends on not the magnitude, but rather the ratio of the two moments and their geometrical configuration. The model does not necessarily lead to high spatial velocity for a magnetar with a strong magnetic field. This fact is consistent with the recent observational upper bound. The maximum velocity predicted with this model is slightly smaller than that of observed fast-moving pulsars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.