Abstract

Generalized parton distributions describe the correlations between the longitudinal momentum and the transverse position of quarks and gluons in a nucleon. They can be constrained by measuring photon leptoproduction observables, arising from the interference between Bethe-Heitler and deeply virtual Compton scattering (DVCS) processes. At leading-twist/leading-order, the amplitude of the latter is parametrized by complex integrals of the GPDs ${H,E,\stackrel{\texttildelow{}}{H},\stackrel{\texttildelow{}}{E}}$. As data collected on an unpolarized or longitudinally polarized target constrains $H$ and $\stackrel{\texttildelow{}}{H}$, $E$ is poorly known as it requires data collected with a transversely polarized target, which is very challenging to implement in fixed-target experiments. The only alternative considered so far has been DVCS on a neutron with a deuterium target, while assuming isospin symmetry and absence of final-state interactions. Today, we introduce the polarization of the recoil proton as a new DVCS observable, highly sensitive to $E$, which appears feasible for an experimental study at a high-luminosity facility such as Jefferson Lab.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.