Abstract
Recently, the evaporative recoil pressure effect induced by high intensity laser irradiation on molten zone motion in welds has become increasingly appreciated. Theory indicates that so-called conduction mode welds are in fact rarely encountered. Given that shapes and sizes of fusion zones are so dependent upon recoil force, the ability to model fusion zone behavior requires correct implementation of the physics involved, particularly as size scales decrease and surface energy effects increase in relative magnitude. Our presentation discusses validation experiments supporting such model development. Two techniques are discussed, a calibration method using sensitive piezoelectric force gauges, and a more general tool using a microphonic method. Each technique has advantages and disadvantages, which will be discussed. For example, while the piezo force gauge technique is readily understandable, it requires a very lightweight sample in order to avoid smearing of the force signal. However, when the sample size becomes very small, other phenomena begin to affect the gauge, giving apparently negative force measurements! The microphonic technique can be applied to actual welds, but needs careful consideration as well to eliminate comb-filtering, echoes and sample ringing. Measurements on 304L will be presented and discussed relative to contemporary theories.Recently, the evaporative recoil pressure effect induced by high intensity laser irradiation on molten zone motion in welds has become increasingly appreciated. Theory indicates that so-called conduction mode welds are in fact rarely encountered. Given that shapes and sizes of fusion zones are so dependent upon recoil force, the ability to model fusion zone behavior requires correct implementation of the physics involved, particularly as size scales decrease and surface energy effects increase in relative magnitude. Our presentation discusses validation experiments supporting such model development. Two techniques are discussed, a calibration method using sensitive piezoelectric force gauges, and a more general tool using a microphonic method. Each technique has advantages and disadvantages, which will be discussed. For example, while the piezo force gauge technique is readily understandable, it requires a very lightweight sample in order to avoid smearing of the force signal. However, when the sample siz...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.