Abstract

The possible appearance of nuclear halos in ground and excited states close to the particle-decay threshold is of great importance in the investigation of nuclear structure and few-body correlations at the limit of stability. In order to obtain direct evidence of the halo structure manifested in nuclear excited states, we have considered a new method to measure the interaction cross sections of excited states. The combination of the transmission method and the recoil distance Doppler-shift method with a plunger device enables us to measure the number of interactions of the excited states in a target. Formulae to determine the interaction cross section are derived, and key issues to realize measurements are discussed. Dominant sources of errors are uncertainties in the excited-state lifetimes and γ-ray yields. We examine prototype experiments and perform simulations to study the impact of each uncertainty on the final result. This method provides a novel opportunity to perform cross section measurements on the excited states of rare isotopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.