Abstract

Eutrophication has spread from shallow lakes in temperature zones to lakes in cold regions as a result of a continuous warm climate and human activities. Little proof for the importance of dissolved organic phosphorus (DOP) in contributing to phosphorus cycling and algae growth has been generated for aquatic ecosystems, particularly in cold eutrophic lakes. In this study, a comprehensive in situ study was conducted in overlying water, suspended particulate matter, and sediment during and after algal bloom (in July and September, respectively) in Lake Hulun. Multiple methods of 31P NMR, enzymatic hydrolysis, and UV–visible technologies were combined to detect phosphorus occurrence, bioavailability, and molecular structure from a novel angle. The 31P NMR analysis results showed that DNA-P is mainly stored in the dissolved phase and has not been detected in suspended particulate matter or sediment. Enzymatic hydrolysis was used to determine the bioavailability of DOP, which revealed that in July and September, respectively, 85% and 79% of DOP were hydrolyzable. UV–visible analysis represented that the degree of humification and molecular weight of DOP were high during the algal bloom, but these values considerably dropped following the algal bloom. The large amount of DNA-P present in the overlying water is the main reason for the high degree of humification and high molecular weight of the water body. Besides, Lake Hulun's DNA-P remains highly bioavailable during algal blooms, despite its high degree of humification and molecular weight. These findings can serve as a theoretical basis for understanding the migration and transformation of DOP, as well as the persistence of algal blooms in eutrophic lakes located in cold regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call