Abstract

This work proposes numerical tests which determine whether a two-qubit operator has an atypically simple quantum circuit. Specifically, we describe formulae, written in terms of matrix coefficients, characterizing operators implementable with exactly zero, one, or two controlled-not (CNOT) gates and all other gates being one-qubit. We give an algorithm for synthesizing two-qubit circuits with optimal number of CNOT gates, and illustrate it on operators appearing in quantum algorithms by Deutsch-Josza, Shor and Grover. In another application, our explicit numerical tests allow timing a given Hamiltonian to compute a CNOT modulo one-qubit gates, when this is possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.