Abstract

Parkinson's disease (PD) is one of the typical movement disorder diseases among elderly people, which has a serious impact on their daily lives. In this article, we propose a novel computation framework to recognize gait patterns in patients with PD. The key idea of our approach is to distinguish gait patterns in PD patients from healthy individuals by accurately extracting gait features that capture all three aspects of movement functions, that is, stability, symmetry, and harmony. The proposed framework contains three steps: gait phase discrimination, feature extraction and selection, and pattern classification. In the first step, we put forward a sliding window--based method to discriminate four gait phases from plantar pressure data. Based on the gait phases, we extract and select gait features that characterize stability, symmetry, and harmony of movement functions. Finally, we recognize PD gait patterns by applying a hybrid classification model. We evaluate the framework using an open dataset that contains real plantar pressure data of 93 PD patients and 72 healthy individuals. Experimental results demonstrate that our framework significantly outperforms the four baseline approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.