Abstract

Extracting and understanding of emotion is of high importance for the interaction between human and machine communication systems. The most expressive way to display the human's emotion is through facial expression analysis. This paper proposes a multiple emotion recognition system that can recognize combinations of up to a maximum of three different emotions using an active appearance model (AAM), the proposed classification standard, and a k-nearest neighbor (k-NN) classifier in mobile environments. AAM can take the expression of variations that are calculated by the proposed classification standard according to changes in human expressions in real time. The proposed k-NN can classify basic emotions (normal, happy, sad, angry, surprise) as well as more ambiguous emotions by combining the basic emotions in real time, and each recognized emotion that can be subdivided has strength. Whereas most previous methods of emotion recognition recognize various kind of a single emotion, this paper recognizes various emotions with a combination of the five basic emotions. To be easily understood, the recognized result is presented in three ways on a mobile camera screen. The result of the experiment was an average 85 % recognition rate and a 40 % performance showed optimized emotions. The implemented system can be represented by one of the example for augmented reality on displaying combination of real face video and virtual animation with user's avatar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.