Abstract

▪ Abstract Mantle plumes are recognized by domal uplift, triple junction rifting, and especially the presence of a large igneous province (LIP), dominated in the Phanerozoic by flood basalts, and in the Proterozoic by the exposed plumbing system of dykes, sills, and layered intrusions. In the Archean, greenstone belts that contain komatiites have been linked to plumes. In addition, some carbonatites and kimberlites may originate from plumes that have stalled beneath thick lithosphere. Geochemistry and isotopes can be used to test and characterize the plume origin of LIPs. Seismic tomography and geochemistry of crustal and subcrustal xenoliths in kimberlites can identify fossil plumes. More speculatively, plumes (or clusters of plumes) have been linked with variation in the isotopic composition of marine carbonates, sea-level rise, iron formations, anoxia events, extinctions, continental breakup, juvenile crust production, magnetic superchrons, and meteorite impacts. The central region of a plume is located using the focus of a radiating dyke swarm, the distribution of komatiites and picrites, etc. The outer boundary of a plume head circumscribes the main flood basalt distribution and approximately coincides with the edge of domal uplift that causes shoaling and offlap in regional sedimentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.