Abstract

Exhaled breath contains thousands of gaseous volatile organic compounds (VOCs) that could be used as non-invasive biomarkers of lung cancer. Breath-based lung cancer screening has attracted wide attention on account of its convenience, low cost and easy popularization. In this paper, the research of lung cancer detection and staging is conducted by the self-developed electronic nose (e-nose) system. In order to investigate the performance of the device in distinguishing lung cancer patients from healthy controls, two feature extraction methods and two different classification models were adopted. Among all the models, kernel principal component analysis (KPCA) combined with extreme gradient boosting (XGBoost) achieved the best results among 235 breath samples. The accuracy, sensitivity and specificity of e-nose system were 93.59%, 95.60% and 91.09%, respectively. Meanwhile, the device could innovatively classify stages of 90 lung cancer patients (i.e., 44 stage III and 46 stage IV). Experimental results indicated that the recognition accuracy of lung cancer stages was more than 80%. Further experiments of this research also showed that the combination of sensor array and pattern recognition algorithms could identify and distinguish the expiratory characteristics of lung cancer, smoking and other respiratory diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.