Abstract

In recent years, short-form videos spread rapidly around the world and became a popular way of entertainment for people to share their daily lives. However, many videos record behaviors of other people without their awareness and are uploaded onto the short-form video platforms. Such behavior severely invades personal privacy and can even bring risks of personal information leakage. At present, few studies focus on detecting privacy violations in short-form videos. Meanwhile, due to the difficulty in transferring existing models to the scenario of short-form videos and the lack of reliable datasets, it is very challenging to recognize irrelevant faces in short-form videos. To deal with this problem, we constructed and published an irrelevant faces dataset (IF-Dataset) with 43,965 irrelevant face images and 89,924 relevant face images based on the videos collected from Douyin (the Chinese version of TikTok). In addition, we constructed a framework that implemented our proposed deep learning model Multi-features Multi-head Fusion Network (MMFNet) to recognize irrelevant faces from short-form videos. The experimental results show that the F1 score of the MMFNet can reach 87.03%. We also proposed a novel loss function as well as an active learning system to improve the generalization ability of models, which can reach the Relative Error Reduction (RER) up to 29.58%. Our work provides both theoretical and practical support for face protection in short-form videos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.