Abstract
In this paper, a neural network based face recognition system is presented. One of the main problems encountered when using neural networks for face recognition is luck of enough training data. This is because, in most cases, only one image per subject is available. Therefore, one of our objectives is to solve the problem of luck of enough data to train neural networks. For each image we ”increase” the data available by several processes for example, mirroring of the image, using color, edges information, etc. The neural network is trained using structural learning to reduce its size. To represent the face color, the YIQ and the XYZ color spaces are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.