Abstract

Automatic emotion recognition is vital for building natural and engaging human-computer interaction systems. Combining information from multiple modalities typically improves emotion recognition performance. In previous work, features from different modalities have generally been fused at the same level with two types of fusion strategies: Feature-Level fusion, which concatenates feature sets before recognition; and Decision-Level fusion, which makes the final decision based on outputs of the unimodal models. However, different features may describe data at different time scales or have different levels of abstraction. Cognitive Science research also indicates that when perceiving emotions, humans use information from different modalities at different cognitive levels and time steps. Therefore, we propose a Hierarchical fusion strategy for multimodal emotion recognition, which incorporates global or more abstract features at higher levels of its knowledge-inspired structure. We build multimodal emotion recognition models combining state-of-the-art acoustic and lexical features to study the performance of the proposed Hierarchical fusion. Experiments on two emotion databases of spoken dialogue show that this fusion strategy consistently outperforms both Feature-Level and Decision-Level fusion. The multimodal emotion recognition models using the Hierarchical fusion strategy achieved state-of-the-art performance on recognizing emotions in both spontaneous and acted dialogue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.