Abstract

BackgroundNamed entity recognition (NER) is an important task in clinical natural language processing (NLP) research. Machine learning (ML) based NER methods have shown good performance in recognizing entities in clinical text. Algorithms and features are two important factors that largely affect the performance of ML-based NER systems. Conditional Random Fields (CRFs), a sequential labelling algorithm, and Support Vector Machines (SVMs), which is based on large margin theory, are two typical machine learning algorithms that have been widely applied to clinical NER tasks. For features, syntactic and semantic information of context words has often been used in clinical NER systems. However, Structural Support Vector Machines (SSVMs), an algorithm that combines the advantages of both CRFs and SVMs, and word representation features, which contain word-level back-off information over large unlabelled corpus by unsupervised algorithms, have not been extensively investigated for clinical text processing. Therefore, the primary goal of this study is to evaluate the use of SSVMs and word representation features in clinical NER tasks.MethodsIn this study, we developed SSVMs-based NER systems to recognize clinical entities in hospital discharge summaries, using the data set from the concept extration task in the 2010 i2b2 NLP challenge. We compared the performance of CRFs and SSVMs-based NER classifiers with the same feature sets. Furthermore, we extracted two different types of word representation features (clustering-based representation features and distributional representation features) and integrated them with the SSVMs-based clinical NER system. We then reported the performance of SSVM-based NER systems with different types of word representation features.Results and discussionUsing the same training (N = 27,837) and test (N = 45,009) sets in the challenge, our evaluation showed that the SSVMs-based NER systems achieved better performance than the CRFs-based systems for clinical entity recognition, when same features were used. Both types of word representation features (clustering-based and distributional representations) improved the performance of ML-based NER systems. By combining two different types of word representation features together with SSVMs, our system achieved a highest F-measure of 85.82%, which outperformed the best system reported in the challenge by 0.6%. Our results show that SSVMs is a great potential algorithm for clinical NLP research, and both types of unsupervised word representation features are beneficial to clinical NER tasks.

Highlights

  • Named entity recognition (NER) is an important task in clinical natural language processing (NLP) research

  • In our previous work presented in the ACM sixth international workshop on Data and text mining in biomedical informatics (DTMBIO’12) [28], we explored the uses of Structural Support Vector Machines (SSVMs), combined features, clustering-based word representation features and tag representations for clinical entity recognition

  • When both types of word representation features were combined with SSVMs, our system achieved a highest F-measure of 85.82%, an improvement of 0.4% to the baseline system, which outperformed the best system reported in the challenge by 0.6%

Read more

Summary

Introduction

Named entity recognition (NER) is an important task in clinical natural language processing (NLP) research. Machine learning (ML) based NER methods have shown good performance in recognizing entities in clinical text. Structural Support Vector Machines (SSVMs), an algorithm that combines the advantages of both CRFs and SVMs, and word representation features, which contain word-level back-off information over large unlabelled corpus by unsupervised algorithms, have not been extensively investigated for clinical text processing. Natural language processing (NLP) technologies, which can extract structured clinical information from narrative text, have been introduced to the medical domain for more than a decade [1]. Named Entity Recognition (NER), which is to identify boundary and to determine semantic classes (e.g., person names, locations, or organizations) of words/phrases in free text, is an important task in NLP research. Many participating teams, including all top five systems (with F-measures ranging from 81.3% to 85.2%), were primarily based on machine learning approaches [16,17,18]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call