Abstract
The degree pattern of a finite group M has been introduced by A. R. Moghaddamfar et al. [Algebra Colloquium, 2005, 12(3): 431–442]. A group M is called k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups having the same order and degree pattern as M. In particular, a 1-fold OD-characterizable group is simply called OD-characterizable. In this article, we will show that the alternating groups Ap+3 for p = 23, 31, 37, 43 and 47 are OD-characterizable. Moreover, we show that the automorphism groups of these groups are 3-fold OD-characterizable. It is worth mentioning that the prime graphs associated with all these groups are connected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.