Abstract

Ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products are of broad interest because of their intrinsic bioactivities and potential for synthetic biology. The RiPP cyanobactin pathways pat and tru have been experimentally shown to be extremely tolerant of mutations. In nature, the pathways exhibit “substrate evolution”, where enzymes remain constant while the substrates of those enzymes are hypervariable and readily evolvable. Here, we sought to determine the mechanism behind this promiscuity. Analysis of a series of different enzyme–substrate combinations from five different cyanobactin gene clusters, in addition to engineered substrates, led us to define short discrete recognition elements within substrates that are responsible for directing enzymes. We show that these recognition sequences (RSs) are portable and can be interchanged to control which functional groups are added to the final natural product. In addition to the previously assigned N- and C-terminal proteolysis RSs, here we assign the RS for heterocyclization modification. We show that substrate elements can be swapped in vivo leading to successful production of natural products in E. coli. The exchangeability of these elements holds promise in synthetic biology approaches to tailor peptide products in vivo and in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.