Abstract

Although regulated ectodomain shedding affects a large panel of structurally and functionally unrelated proteins, little is known about the mechanisms controlling this process. Despite a lack of sequence similarities around cleavage sites, most proteins are shed in response to the stimulation of protein kinase C by phorbol esters. The signal-transducing receptor subunit gp130 is not a substrate of the regulated shedding machinery. We generated several chimaeric proteins of gp130 and the proteins tumour necrosis factor α (TNF-α), transforming growth factor α (TGF-α) and interleukin 6 receptor (IL-6R), which are known to be subject to shedding. By exchanging small peptide sequences of gp130 for cleavage-site peptides of TNF-α, TGF-α and IL-6R we showed that these short sequences conferred susceptibility to spontaneous and phorbol-ester-induced shedding of gp130. Importantly, these chimaeric gp130 proteins were functional, as shown by the phosphorylation of gp130 and the activation of signal transduction and activators of transcription 3 (‘STAT3’) on stimulation with cytokine. To investigate minimal requirements for shedding, truncated cleavage-site peptides of IL-6R were inserted into gp130. The resulting chimaeras were susceptible to shedding and showed the same cleavage pattern as observed in the chimaeras containing the complete IL-6R cleavage site. Surprisingly, we could also generate cleavable chimaeras by exchanging the juxtamembrane sequence of gp130 for the corresponding region of leukaemia inhibitory factor (‘LIF’) receptor, a protein that like gp130 is not subject to regulated or spontaneous shedding. Thus it seems that there is no minimal consensus shedding sequence. We speculate that structural changes allow the access of the protease to a membrane-proximal region, leading to shedding of the protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call