Abstract
On the basis of compiled multidisciplinary historical data in 2006–2007 and incorporation of relevant simulation results and remote sensing data, we performed an in-depth study of the generation and dissipation process of the hypoxic zone and its distribution morphology and structure off the Yangtze River estuary. Based on the hydrological circulation dynamics, reproduction of phytoplankton (leading to the decomposition of organic matter), and other factors, we comprehensively and systematically investigated the generation and dissipation of the hypoxic zone and underlying mechanisms for the seasonal variation in its position, explored the multi-factorial synergistic reactions during the generation and dissipation process of the hypoxic zone, and revealed the controlled mechanism for the morphology and structure of the hypoxic zone’s distribution. Our studies indicate that in the winter and spring seasons, the hydrological environment off the Yangtze River estuary provides a water body with relatively low contents of dissolved oxygen (DO), which is the background for the formation of a hypoxic zone. After entering into the summer season, the hypoxic zone gradually develops towards the north and becomes mature. Because of the impact of the terrain, local decomposition of organic matter, and upwelling of the Kuroshio subsurface water in July–August, the hypoxic zone off the Yangtze River estuary exhibits the characteristics of discontinuous distribution in space and has a south and north “dual-core” structure in the inner continental shelf. In addition, there is a hypoxic core in the eastern outer continental shelf. The degrees of hypoxia vary for different areas; they are strongest overall in the north, next strongest in the south; they are weakest on the outer continental shelf. In summer, the hypoxic zone in the north is related to the northward differentiation of the southern hypoxic zone and results from local development and intensification. In August, the hypoxic zone in the north reaches its peak, and after September, it rapidly retreats southward and disappears because of weakening stratification. In the fall, there is hypoxic zone along the coast of Zhejiang in the south, and there is also a low-DO area to the southwest of Jeju Island, with both zones disappearing rapidly. In addition, the change of dynamic environment also causes the low-DO area of the outer continental shelf to move outward in the fall. The variation in the intensity of the stratification and its cumulative effects as a barrier of vertical DO transportation over long periods of time have a significant impact on the degree of hypoxia in the hypoxic zone. In addition, the seasonal variations in the size of the stratified region, intensity of each current system/water mass, upwelling, front, and high-value area of phytoplankton biomass jointly restrict the extension of the hypoxic zone in the inner continental shelf and latitudinal (south-north direction) movement of its location off the Yangtze River estuary. The combined effect of dynamic factors, such as that of the Kuroshio subsurface water, causes a low-DO core in the outer continental shelf. The bottom cold water to the north of the East China Sea is the dynamic basis for the formation of the low-DO area to the southwest of Jeju Island during the fall season. The special seabed topography and mud area distribution off the Yangtze River estuary have a certain degree of influence on the development of the hypoxic zone. The generation and dissipation of the hypoxic zone and its distribution morphology off the Yangtze River estuary, and seasonal variation of its structure and position are a result of the synergistic effects of various factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.