Abstract

Let \(G\) be a finite group. The character degree graph of \(G\), which is denoted by \(\Gamma (G)\), is the graph whose vertices are the prime divisors of the character degrees of the group \(G\) and two vertices \(p_1\) and \(p_2\) are joined by an edge if \(p_1p_2\) divides some character degree of \(G\). In this paper we prove that the simple group \(\mathrm{PSL}(2,p^2) \) is uniquely determined by its character degree graph and its order. Let \(X_1(G)\) be the set of all irreducible complex character degrees of \(G\) counting multiplicities. As a consequence of our results we prove that if \(G\) is a finite group such that \(X_1(G)=X_1(\mathrm{PSL}(2,p^2) )\), then \(G\cong \mathrm{PSL}(2,p^2) \). This implies that \(\mathrm{PSL}(2,p^2) \) is uniquely determined by the structure of its complex group algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.