Abstract

The enhancer-promoter interactions (EPIs) with strong tissue-specificity play an important role in cis-regulatory mechanism of human cell lines. However, it still remains a challenging work to predict these interactions so far. Due to that these interactions are regulated by the cooperativeness of diverse functional genomic signatures, DNA spatial structure and DNA sequence elements. In this paper, by adding DNA structure properties and transcription factor binding motifs, we presented an improved computational method to predict EPIs in human cell lines. In comparison with the results of other group on the same datasets, our best accuracies by cross-validation test were about 15%–24% higher in the same cell lines, and the accuracies by independent test were about 11%–15% higher in new cell lines. Meanwhile, we found that transcription factor binding motifs and DNA structure properties have important information that would largely determine long range EPIs prediction. From the distribution comparisons, we also found their distinct differences between interacting and non-interacting sets in each cell line. Then, the correlation analysis and network models for relationships among top-ranked functional genomic signatures indicated that diverse genomic signatures would cooperatively establish a complex regulatory network to facilitate long range EPIs. The experimental results provided additional insights about the roles of DNA intrinsic properties and functional genomic signatures in EPIs prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.