Abstract

We deal with germs of diffeomorphisms that are reversible under an involution. We establish that this condition implies that, in general, both the family of reversing symmetries and the group of symmetries are not finite, in contrast with continuous-time dynamics, where typically there are finitely many reversing symmetries. From this we obtain two chains of fixed-points subspaces of involutory reversing symmetries that we use to obtain geometric information on the discrete dynamics generated by a given diffeomorphism. The results are illustrated by the generic case in arbitrary dimension, when the diffeomorphism is the composition of transversal linear involutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.