Abstract
Supervised learning as a sub-discipline of machine learning enables the recognition of correlations between input variables (features) and associated outputs (classes) and the application of these to previously unknown data sets. In addition to typical areas of application such as speech and image recognition, fields of applications are also being developed in the sports and fitness sector. The purpose of this work was to implement a workflow for the automated recognition of sports exercises in the Matlab® programming environment and to carry out a comparison of different model structures. First, the acquisition of the sensor signals provided in the local network and their processing were implemented. The functionalities to be realised included the interpolation of lossy time series, the labelling of the activity intervals performed and, in part, the generation of sliding windows with statistical parameters. The preprocessed data were used for the training of classifiers and artificial neural networks (ANN). These were iteratively optimised in their corresponding hyper parameters for the data structure to be learned. The most reliable models were finally trained with an increased data set, validated and compared with regard to the achieved performance. In addition to the usual evaluation metrics such as F1 score and accuracy, the temporal behaviour of the assignments was also displayed graphically, which enabled statements to be made about potential causes for incorrect assignments. In this context, especially the transition areas between the classes were detected as erroneous assignments as well as exercises with insufficient or clearly deviating execution. The best overall accuracy achieved with ANN and the increased dataset was 93.7 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.