Abstract

Silkworms are insects with important economic value, and mulberry leaves are the food of silkworms. The quality and quantity of mulberry leaves have a direct impact on cocooning. Mulberry leaves are often infected with various diseases during the growth process. Because of the subjectivity and time-consuming problems in artificial identification of mulberry leaf diseases. In this work, a multi-scale residual network fusion Squeeze-and-Excitation Networks (SENet) is proposed for mulberry leaf disease recognition. The mulberry leaf disease dataset was expanded by performing operations such as brightness enhancement, contrast enhancement, level flipping and adding Gaussian noise. Multi-scale convolution was used instead of the traditional single-scale convolution, allowing the network to be widened to obtain more feature information and avoiding the overfitting phenomenon caused by the network piling up too deep. SENet was introduced into the residual network to enhance the extraction of key feature information of the model, thus improving the recognition accuracy of the model. The experimental results showed that the method proposed in this paper can effectively improve the recognition performance of the model. The recognition accuracy reached 98.72%. The recall and F1 score were 98.73% and 98.72% respectively. Compared with some other models, this model has better recognition effect and can provide technical reference for intelligent mulberry leaf disease detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.