Abstract

Nowadays, techniques in digital image processing make it possible to detect damage, such as moisture or biological changes, on the surfaces of historical buildings. Digital classification techniques can be used to identify damages in construction materials in a non-destructive way. In this study, we evaluate the application of the object-oriented classification technique using photographs taken with a Fujifilm IS-Pro digital single lens reflex camera and the integration of the classified images in a three-dimensional model obtained through terrestrial laser scanning data in order to detect and locate damage affecting biocalcarenite stone employed in the construction of the Santa Marina Church (Córdoba, Spain). The Fujifilm IS-Pro camera captures spectral information in an extra-visible range, generating a wide spectral image with wavelengths ranging from ultraviolet to infrared. Techniques of object-oriented classification were applied, taking into account the shapes, textures, background information and spectral information in the image. This type of classification requires prior segmentation, defined as the search for homogeneous regions in an image. The second step is the classification process of these regions based on examples. The output data were classified according to the kind of damage that affects the biocalcarenite stone, reaching an overall classification accuracy of 92% and an excellent kappa statistic (85.7%). We have shown that multispectral classification with visible and near-infrared bands increased the degree of recognition among different damages. Post-analysis of these data integrated in a three-dimensional model allows us to obtain thematic maps with the size and position of the damage.

Highlights

  • We present a case study combining three-dimensional measuring techniques, such as terrestrial laser scanning, and advanced digital classification techniques using multispectral images to yield thematic maps with the size and positions of damage that affects the biocalcarenite stone of the Santa Marina de Aguas Church located in the city of Córdoba (Spain)

  • The evaluation of the proposed methodology for the detection of alterations in the construction material of unique buildings based on the application of advanced object-oriented classification techniques on multispectral images proved to be very successful, with a total accuracy of 92%

  • Through the combination of these classified images and the virtual three-dimensional model obtained with terrestrial LiDAR technology, a thematic map of the areas studied was obtained with a level of detail and accuracy that no other technology can provide

Read more

Summary

Introduction

We present a case study combining three-dimensional measuring techniques, such as terrestrial laser scanning, and advanced digital classification techniques using multispectral images to yield thematic maps with the size and positions of damage that affects the biocalcarenite stone of the Santa Marina de Aguas Church located in the city of Córdoba (Spain). Throughout time, humans have built many unique landmark buildings of great historical, cultural and monetary value. The stone used to build them deteriorates as a result of natural processes, which are exacerbated and accelerated by conditions and circumstances attributable to human activity.[1] Today there is notable concern regarding the need to conserve this heritage given its enormous value to humankind. Multidisciplinary studies are necessary to learn about the deterioration that affects the different materials from which monuments and historical buildings are composed.[2, 3]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call