Abstract

Dynamic Probabilistic Networks (DPNs) are exploited for modeling the temporal relationships among a set of different object temporal events in the scene for a coherent and robust scene-level behaviour interpretation. In particular, we develop a Dynamically Multi-Linked Hidden Markov Model (DML-HMM) to interpret group activities involving multiple objects captured in an outdoor scene. The model is based on the discovery of salient dynamic interlinks among multiple temporal events using DPNs. Object temporal events are detected and labeled using Gaussian Mixture Models with automatic model order selection. A DML-HMM is built using Schwarz's Bayesian Information Criterion based factorisation resulting in its topology being intrinsically determined by the underlying causality and temporal order among different object events. Our experiments demonstrate that its performance on modelling group activities in a noisy outdoor scene is superior compared to that of a Multi-Observation Hidden Markov Model (MOHMM), a Parallel Hidden Markov Model (PaHMM) and a Coupled Hidden Markov Model (CHMM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.