Abstract

Reactions of the model acylium ion (CH3)2N-C(+)=O with acyclic, exocyclic, and spiro acetals of the general formula R(1)O-CR(3)R(4)-OR(2) were systematically evaluated via pentaquadrupole mass spectrometry. Characteristic intrinsic reactivities were observed for each of these classes of acetals. The two most common reactions observed were hydride and alkoxy anion [R(1)O(-) and R(2)O(-)] abstraction. Other specific reactions were also observed: (a) a secondary polar [4(+) + 2] cycloaddition for acetals bearing alpha,beta-unsaturated R(3) or R(4) substituents and (b) OH(-) abstraction for exocyclic and spiro acetals. These structurally diagnostic reactions, in conjunction with others observed previously for cyclic acetals, are shown to reveal the class of the acetal molecule and its ring type and substituents and to permit their recognition and distinction from other classes of isomeric molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.