Abstract

The reaction pattern of an extracellular chitin deacetylase from a Deuteromycete, Colletotrichum lindemuthianum ATCC 56676, was investigated by use of chitooligosaccharides [(GlcNAc)(n)(), n = 3-6] and partially N-deacetylated chitooligosaccharides as substrates. When 0.5% of (GlcNAc)(n)() was deacetylated, the corresponding monodeacetylated products were initially detected without any processivity, suggesting the involvement of a multiple-chain mechanism for the deacetylation reaction. The structural analysis of these first-step products indicated that the chitin deacetylase strongly recognizes a sequence of four N-acetyl-D-glucosamine (GlcNAc) residues of the substrate (the subsites for the four GlcNAc residues are defined as -2, -1, 0, and +1, respectively, from the nonreducing end to the reducing end), and the N-acetyl group in the GlcNAc residue positioned at subsite 0 is exclusively deacetylated. When substrates of a low concentration (100 microM) were deacetylated, the initial deacetylation rate for (GlcNAc)(4) was comparable to that of (GlcNAc)(5), while deacetylation of (GlcNAc)(3) could not be detected. Reaction rate analyses of partially N-deacetylated chitooligosaccharides suggested that subsite -2 strongly recognizes the N-acetyl group of the GlcNAc residue of the substrate, while the deacetylation rate was not affected when either subsite -1 or +1 was occupied with a D-glucosamine residue instead of GlcNAc residue. Thus, the reaction pattern of the chitin deacetylase is completely distinct from that of a Zygomycete, Mucor rouxii, which produces a chitin deacetylase for accumulation of chitosan in its cell wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.