Abstract

Shape is one of the core features of the buildings which are the main elements of the map. The building shape recognition is widely used in many spatial applications. Due to the irregularity of the building contour, it is still challenging for building shape recognition. Inspired by graph signal processing theory, we propose a deep graph filter neural network (DGFN) for the shape recognition of buildings in maps. First, we regard shape recognition as a combination of subjective and objective graph signal filtering process. Second, we construct a shape features extraction framework from the perspective of shape details, shape structure and shape local information. Third, DGFN model can fulfil the tasks of shape classification and shape embedding of building at the same time. Finally, multi angle experiments verify our viewpoint of shape recognition mechanism, and the comparison with similar algorithms proves the high accuracy and availability of DGFN model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.