Abstract
We present a high-accuracy recognition method for various activities using smartphone sensors based on device positions. Many researchers have attempted to estimate various activities, particularly using sensors such as the built-in accelerometer of a smartphone. Considerable research has been conducted under conditions such as placing a smartphone in a trouser pocket; however, few have focused on the changing context and influence of the smartphone position. Herein, we present a method for recognising seven types of activities considering three smartphone positions, and conducted two experiments to estimate each activity and identify the actual state under continuous movement at a university campus. The results indicate that the seven states can be classified with an average accuracy of 98.53% for three different smartphone positions. We also correctly identified these activities with 91.66% accuracy. Using our method, we can create practical services such as healthcare applications with a high degree of accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Space-Based and Situated Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.