Abstract

The contributions of the hippocampus (HC) and perirhinal cortex (PER) to recognition memory are currently topics of debate in neuroscience. Here we used a rapidly-learned (seconds) spontaneous novel odor recognition paradigm to assess the effects of pre-training N-methyl-D-aspartate lesions to the HC or PER on odor recognition memory. We tested memory for both social and non-social odor stimuli. Social odors were acquired from conspecifics, while non-social odors were household spices. Conspecific odor stimuli are ethologically-relevant and have a high degree of overlapping features compared to non-social household spices. Various retention intervals (5min, 20min, 1h, 24h, or 48h) were used between study and test phases, each with a unique odor pair, to assess changes in novelty preference over time. Consistent with findings in other paradigms, modalities, and species, we found that HC lesions yielded no significant recognition memory deficits. In contrast, PER lesions caused significant deficits for social odor recognition memory at long retention intervals, demonstrating a critical role for PER in long-term memory for social odors. PER lesions had no effect on memory for non-social odors. The results are consistent with a general role for PER in long-term recognition memory for stimuli that have a high degree of overlapping features, which must be distinguished by conjunctive representations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call