Abstract

Interferon (IFN) regulatory factor 1 (IRF-1) and IRF-2 were originally identified as transcription factors involved in the regulation of the IFN system. IRF-1 functions as a transcriptional activator, while IRF-2 represses IRF-1 function. More recently, evidence has been provided that IRF-1 and IRF-2 manifest antioncogenic and oncogenic properties, respectively, and that loss of one or both of the IRF-1 alleles may be critical for the development of human hematopoietic neoplasms. Both factors show a high degree of structural similarity in their N-terminal DNA-binding domains, and previous studies suggested that IRF-1 and IRF-2 bind to similar or identical cis elements within type I IFN (IFN-alpha and -beta) and IFN-inducible genes. However, the exact recognition sequences of these two factors have not yet been determined; hence, the spectrum of the IRF-responsive genes remains unclear. In this study, we determined the DNA sequences recognized by IRF-1 and IRF-2, using a polymerase chain reaction-assisted DNA-binding site selection method. We report that sequences selected by this method and the affinities for each sequence were virtually indistinguishable between IRF-1 and IRF-2. We confirm the presence of two contiguous IRF recognition sequences within the promoter region of the IFN-beta gene and of at least one such sequence in all of the IFN-inducible genes examined. Furthermore, we report the presence of potential IRF sequences in the upstream region of several genes involved in cell growth control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.