Abstract

Interferon (IFN) regulatory factor 1 (IRF-1) and IRF-2 were originally identified as transcription factors involved in the regulation of the IFN system. IRF-1 functions as a transcriptional activator, while IRF-2 represses IRF-1 function. More recently, evidence has been provided that IRF-1 and IRF-2 manifest antioncogenic and oncogenic properties, respectively, and that loss of one or both of the IRF-1 alleles may be critical for the development of human hematopoietic neoplasms. Both factors show a high degree of structural similarity in their N-terminal DNA-binding domains, and previous studies suggested that IRF-1 and IRF-2 bind to similar or identical cis elements within type I IFN (IFN-alpha and -beta) and IFN-inducible genes. However, the exact recognition sequences of these two factors have not yet been determined; hence, the spectrum of the IRF-responsive genes remains unclear. In this study, we determined the DNA sequences recognized by IRF-1 and IRF-2, using a polymerase chain reaction-assisted DNA-binding site selection method. We report that sequences selected by this method and the affinities for each sequence were virtually indistinguishable between IRF-1 and IRF-2. We confirm the presence of two contiguous IRF recognition sequences within the promoter region of the IFN-beta gene and of at least one such sequence in all of the IFN-inducible genes examined. Furthermore, we report the presence of potential IRF sequences in the upstream region of several genes involved in cell growth control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.