Abstract

A finite group G is said to be recognizable by spectrum if every finite group with the same set of element orders as G is isomorphic to G. We prove that all finite simple symplectic and orthogonal groups over fields of characteristic 2, except S4(q), S6(2), O8+ (2), and S8(q), are recognizable by spectrum. This result completes the study of the recognition-by-spectrum problem for finite simple classical groups in characteristic 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.