Abstract

An excellent atomic layer deposition (ALD) method was adopted for the controllable systhesis of a xFe2O3-nPt (or nPt-xFe2O3)-coated graphene nanostructure (xFe2O3-nPt@graphene). The produced nanomaterials have beencharacterized by transmission electron microscopy (TEM), cyclic voltammetry (CV), and X-ray photoelectron spectroscopy (XPS). It is shown that xFe2O3 and nPt were effectively tailored and deposited on the graphene. A simple, rapid, and sensitive electrochemical cytosensor based on the controllable nanomaterials was successfully developed for MCF-7 cells detection by combining the high affinity and specificity of an aptamer. The prepared cytosensor displays a linear response to MCF-7 in the concentration range 18 to 1.5 × 106 cell mL-1 with the detection limit of 6 cell mL-1 (at an S/N of 3). This cytosensor was applied to detect circulating tumor cells (CTCs) in patient blood and the results were satisfied. The experimental results indicate thatthe proposed controllable electrochemical cytosensor is highly-sensitive, and convenient for clinical detection of breast CTCs. Graphical abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call